
AntidoteDB: a planet scale highly-available
transactional database

09/12/2019-1

Sara S. Hamouda, Sorbonne-Université-LIP6 & INRIA
sara.hamouda@inria.fr

ANU CECS Seminar, Canberra, Australia, 9/12/2019
University of Sydney, Faculty of Engineering, Sydney, Australia, 20/12/2019

Still Sticking with Distributed Systems Research

09/12/2019-2

Titre

Gadi: NCI’s new supercomputer

From HPC Applications

To Distributed Cloud Applications

09/12/2019-3

Geo-Replication
Replicating the entire service across multiple data centers

• Low latency
§ Users connect to the nearest replica

• Fault tolerance
§ No single point of failure

09/12/2019-4

Consistency: Integrity Constraints

Withdraw 70$

Withdraw 50$

100$

Balance >= 0

30$

Bob: Withdraw 70$ Alice: Withdraw 50$

30$

commit abort

09/12/2019-5

Consistency: Integrity Constraints

100$

Balance >= 0

100$

Balance >= 0

30$

Bob: Withdraw 70$

50$

Alice: Withdraw 50$

commit

commit

Alice: Withdraw 50$

-20$

replay

Bob: Withdraw 70$

-20$

replay

09/12/2019-6

200$

Bob: Balance + 100

200$

Alice: Balance * 2

Consistency: Ordering Anomalies

300$

Bob: Balance + 100

400$

Alice: Balance * 2

100$

Balance >= 0

100$

Balance >= 0

09/12/2019-7

The Problem with Concurrent Writes

• Synchronous writes

§ Slow
§ Replicas are always consistent

• Asynchronous writes

§ Fast
§ Replicas may diverge

09/12/2019-8

AntidoteDB Research Aim

• Goal

§ Geo-replicated objects
§ Fast reads and writes
§ Strong convergence guarantees
§ Easy to program

• Contributions

§ Strong Eventual Consistency
§ Conflict-free Replicated Data Types
§ Transactional Causal Consistency (TCC)

AntidoteDB

09/12/2019-9

Strong Eventual Consistency

09/12/2019-10

Let’s consider a replicated graph

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

State:
Nodes, Edges

Operations:
• addSubGraph
• remSubGraph

09/12/2019-11

Strong Consistency

Slide courtesy of Marc Shapiro.

r1

r2

addSubGraph

sy
nc

sy
nc

remSubGraph

sy
nc

remSubGraph

addSubGraph

addSubGraph

sy
nc

commit

abort

• Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

09/12/2019-12

Strong Consistency

Slide courtesy of Marc Shapiro.

• Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

0
Replica 1 Replica 2

09/12/2019-13

Strong Consistency

1
Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

• Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

09/12/2019-14

Strong Consistency

2
Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

• Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

09/12/2019-15

Strong Consistency

3
Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

• Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

- Slow and unavailable under network partition.
+ Easy to program - replication is almost transparent.

09/12/2019-16

Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• On conflict: consensus in the background, rollback, or arbitrate.

09/12/2019-17

Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• On conflict: consensus in the background, rollback, or arbitrate.

09/12/2019-18

Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• On conflict: consensus in the background, rollback, or arbitrate.

09/12/2019-19

Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• On conflict: consensus in the background, rollback, or arbitrate.

09/12/2019-20

Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2Conflict

• Update locally, propagate asynchronously.
• On conflict: consensus in the background, rollback, or arbitrate.

09/12/2019-21

Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2Reconcile

• Update locally, propagate asynchronously.
• On conflict: consensus in the background, rollback, or arbitrate.

09/12/2019-22

0$

100$

Balance = 100

200$

Balance = 200

LWW: Last Writer Wins

0$

Reconcile

Reconcile

100$

100$

09/12/2019-23

Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2Reconcile

• Update locally, propagate asynchronously.
• On conflict: consensus in the background, rollback, or arbitrate.
• Conflict resolution: ad-hoc mechanisms, unclear semantics.

09/12/2019-24

Strong Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• Conflict-free objects: local deterministic conflict resolution.
• No consensus, no rollback.

09/12/2019-25

Strong Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• Conflict-free objects: local deterministic conflict resolution.
• No consensus, no rollback.

09/12/2019-26

Strong Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• Conflict-free objects: local deterministic conflict resolution.
• No consensus, no rollback.

09/12/2019-27

Strong Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• Conflict-free objects: local deterministic conflict resolution.
• No consensus, no rollback.

09/12/2019-28

Strong Eventual Consistency

Slide courtesy of Marc Shapiro.

Replica 1 Replica 2

• Update locally, propagate asynchronously.
• Conflict-free objects: local deterministic conflict resolution.
• No consensus, no rollback.

Conflict

09/12/2019-29

« We propose a simple, theoretically-
sound approach to eventual consistency.
Our system model, Strong Eventual
Consistency or SEC, avoids the
complexity of conflict resolution and of
roll-back. Conflict-freedom ensures
safety and liveness despite any number
of failures. »

AntidoteDB

09/12/2019-30

Conflict-free Replicated Data Types (CRDTs)

09/12/2019-31

Basic Concepts

• Read local replica

• Update local replica, transmit later

• Deterministic conflict resolution

Slide courtesy of Marc Shapiro.

09/12/2019-32

Query

r3

r1

r2

object
r1.q()
s

• Query local replica
• Clients connect to any replica

Slide courtesy of Marc Shapiro.

client

s
r2.q()

client

09/12/2019-33

Update and Transmit

r3

r1

r2

object

• Update source replica
• Transmit to downstream replicas later
• Receiver applies update

Slide courtesy of Marc Shapiro.

client

s
r2.v()

r1.u()
s

client

D

D

D

D

09/12/2019-34

Replication Models

Slide courtesy of Marc Shapiro.

• State-based Replication

§ Source replica propagates full state
§ Downstream replicas merge states

• Operation-based Replication

§ Source replica propagates functions
§ Downstream replicas replay received functions

09/12/2019-35

State-based Replication

r1.u()→S1

r2.v()→S2

m(S1, S2)→S3

S1

S3

m(S0 , S3)→S4

Slide courtesy of Marc Shapiro.

r3

r1

r2

object

S0

S0

S0

SySxS0 … ……

S2
Sz

S1

S3

• Convergence: sufficient condition
§ States form a monotonic semi-lattice
§ Merge computes Least Upper Bound

09/12/2019-36

Example: State-based Repl.
Grow-Only Counter

• Increment

§ Payload: P = [0, 0, …]
§ value() = ∑iP[i]
§ increment() = P[MyRepID]++
§ merge(S1,S2) =

P = […, max(S1.P[i], S2.P[i]), …]

09/12/2019-37

[0, 0]

[0, 0]

Inc() [1, 0]

Inc() = [0, 1] Inc() = [0, 2]

Merge([1,0], [0,2])=[1,2]

Merge([0,2], [1,2])=[1,2]

Example: State-based Repl.
Grow-Only Counter

09/12/2019-39

Example: State-based Repl.
Positive-Negative Counter

• Increment / decrement

§ Payload: P = [0, 0, …],
N = [0, 0, …]

§ value() = ∑iP[i] - ∑iN[i]
§ increment() = P[MyRepID]++
§ decrement() = N[MyRepID]++
§ merge(S1,S2) =

P = […, max(S1.P[i], S2.P[i]), …],
N = […, max(S1.N[i], S2.N[i]), …]

Slide courtesy of Marc Shapiro.

09/12/2019-40

Replica 1

State (replica1):
• Edges = { e1, e2, e3, e4, e5, e6,

e7, e8, e9, e10 , e11 }
• Deleted = { e10 , e11 }

Replica 2

e
1

e11

e2

e3

e4

e5

e6
e7

e8

e9

e10

e
1

e11

e2

e3

e4

e5

e6
e7

e8

e9

e10

State (replica2):
• Edges = { e1, e2, e3, e4, e5, e6,

e7, e8, e9, e10 , e11 }
• Deleted = { e10 , e11 }

Example: State-based Repl.
Graph

09/12/2019-41

Static Analysis
for State-
based CRDTs

PaPoC 2019

09/12/2019-42

Operation-based Replication

r1.u()

r2.v()

Slide courtesy of Marc Shapiro.

r3

r1

r2

object

S0

S0

S0

r1.v()

r3.v()

r2.u()

r3.u()
• Convergence: sufficient condition
§ Reliable exact-once delivery
§ Operations must commute and be idempotent

09/12/2019-43

Example: Operation-based Repl.
Grow-Only Set

Sequential specification of Set:

{true} add(e) {e ∈ S}

Commutative operations (e ≠ f):

{true} add(e) || add(e) {e ∈ S}
{true} add(e) || add(f) {e,f ∈ S}

Slide courtesy of Marc Shapiro

09/12/2019-44

Example: Operation-based Repl.
Set

Sequential specification of Set:

{true} add(e) {e ∈ S}
{true} rmv(e) {e ∉ S}

Commutative operations (e ≠ f):

{true} add(e) || add(e) {e ∈ S}
{true} add(e) || add(f) {e,f ∈ S}
{true} rmv(e) || rmv(e) {e ∉ S}
{true} rmv(e) || rmv(f) {e, f ∉ S}
{true} add(e) || rmv(f) {e ∈ S, f ∉ S}

Non-commutative operations:

{true} add(e) || rmv(e) {????}
Slide courtesy of Marc Shapiro.

09/12/2019-45

{true} add(e) || rmv(e) {????}

add wins {e ∈ S}
remove wins {e ∉ S}
error state {⊥e ∈ S}
last writer wins { add(e) < rmv(e) ⇒ e ∉ S ∧

rmv(e) < add(e) ⇒ e ∈ S }

Resort to coordination…

Example: Operation-based Repl.
Set

Slide courtesy of Marc Shapiro.

09/12/2019-46

Static Analysis
for Operation-
based CRDTs

POPL 2016

09/12/2019-47

Library of CRDTs

• Register

§ Last-Writer Wins
§ Multi-Value

• Set

§ Grow-Only
§ 2P (Two Phase)
§ OR (Observed Remove)
• Map

• Tree

• Counter

§ Unlimited
§ Non-negative

• Graph

§ Directed
§ Monotonic DAG
§ Edit graph

• Sequence

Slide courtesy of Marc Shapiro.

09/12/2019-48

CRDTs in Industry

09/12/2019-49

Not Everything is a CRDT

• Some application invariants cannot be maintained without
synchronization

§ Example: bounded resources invariants
§ Balance >= 0
§ Tickets <= 1000
§ Students enrolled <= 200

09/12/2019-50

Bank Account

• Invariant

§ balance >= 0

• Deposit (amt)

§ Precondition: TRUE
§ Effect: balance = balance + amt

• Withdraw (amt)

§ Precondition: amt <= balance
§ Effect: balance = balance - amt

deposit withdraw

deposit

withdraw

Precondition Stability Analysis

Sync-free

Sync with other withdrawals

09/12/2019-51

CAP Theorem

A service can either guarantee Consistency or
Availability under network Partition

Strong Consistency Eventual Consistency

CAP

Strong Eventual Consistency
A sweet spot for applications that can

be expressed using CRDTs

AntidoteDB

09/12/2019-52

Transactional Causal Consistency

09/12/2019-53

Transactional Causal Consistency

• Support for atomicity

§ Highly-available
§ No aborts
§ Strongest possible consistency while

maintaining availability
§ Interactive read-write

transactions

• TCC in AntidoteDB

§ Supports replication and
sharding

AntidoteDB

09/12/2019-54

What I try to do …

09/12/2019-55

Towards Shard Replication in AntidoteDB

2PC

Pa
xo

s

09/12/2019-56

Just-Right Consistency

A

B

C

A

Centralized
Program

Concurrent
Program

async

async

local

• Add convergence
mechanisms

• Add detection of
incorrect states

• Remedy of incorrect
states

• Add synchronization
• …

09/12/2019-57

Just-Right Consistency

A

B

C

A

Centralized
Program

Concurrent
Program

async

async

local

?

l Given a correct centralized database program, can we synthesis a
correct and performant program for an AP database?

09/12/2019-58

Just-Right Consistency

PaPoC 2019 POPL 2016

l Static analysis tools for state-based and operation-based CRDTs

09/12/2019-59

Just-Right Consistency

l I am looking at a transaction chopping criteria for TCC.

transfer1(acc1, acc2, amt)
{

txn {
acc1.balance -= amt;
acc2.balance += amt;

}
}

transfer2(acc1, acc2, amt) {
chain {

txn {
acc1.balance -= amt;

}
txn {

acc2.balance += amt;
}

}
}

?

09/12/2019-60

Summary

• Strong Eventual Consistency

§ High availability
§ Strong convergence guarantees

• CRDTs

§ Sequential-like data structures with local deterministic conflict
resolution

• Transactional Causal Consistency
§ Highly-available transactions with no aborts

09/12/2019-61

Acknowledgements

• The work presented is the result of the work of a very large
number of persons, mostly in the context of SyncFree (2013-2016)
and LightKone (2016-2019) projects.

• Most of the slides are from presentations prepared by Marc
Shapiro (of Sorbonne-Université-LIP6 & INRIA) and Annette
Bieniusa (Technical University of Kaiserlautern).
• I thank them for authorizing my use of their slides.

09/12/2019-62

AntidoteDB https://www.antidotedb.eu/
https://github.com/AntidoteDB

https://www.antidotedb.eu/
https://github.com/AntidoteDB

09/12/2019-63

Thank you!

