AntidoteDB: a planet scale highly-available
transactional database

Sara S. Hamouda, Sorbonne-Université-LIP6 & INRIA
sara.hamouda@inria.fr

ANU CECS Seminar, Canberra, Australia, 9/12/2019
University of Sydney, Faculty of Engineering, Sydney, Australia, 20/12/2019

LIGHTKONE

Lightweight computation for networks at the edge

1 - 09/12/2019

Still Sticking with Distributed Systems Research

From HPC Applications

Gadi: NCI’s new supercomputer

To Distributed Cloud Applications

YK & 3%

OF

V4
2 - 09/12/2019 &@W

Geo-Replication

Replicating the entire service across multiple data centers

* Low latency * Fault tolerance
= Users connect to the nearest replica = No single point of failure

3

- 09/12/2019

czea—

Consistency: Integrity Constraints

Withdraw 70%

Bob:Withdraw 70% Alice:Withdraw 50%
ﬁ TR 708 e 3 eeesoeeessoee >
commit abort

Balance >= 0

9/

Withdraw 50%

4 - 09/12/2019 &t’lta/—

Consistency: Integrity Constraints

Bob:Withdraw 70% Alice:Withdraw 50%
.................. commlt replay>
.................. Ll SR (1 L. A |

Alice:Withdraw 50% Bob:Withdraw 70%

9 Balance >= 0 a ‘

Vd
5 - 09/12/2019 h’l‘ﬂ/—

Consistency: Ordering Anomalies

Alice: Balance * 2

... >

Bob: Balance + 100

g -

6 - 09/12/2019 h’l‘ﬂ/—

The Problem with Concurrent Writes

* Synchronous writes

= Slow
= Replicas are always consistent

e Asynchronous writes

= Fast

= Replicas may diverge

7 - 09/12/2019

AntidoteDB Research Aim

e Goal

= Geo-replicated objects

= Fast reads and writes

= Strong convergence guarantees
= Easy to program

e Contributions

= Strong Eventual Consistency
= Conflict-free Replicated Data Types

= Transactional Causal Consistency (TCC)

8 - 09/12/2019

4

AntidoteDB

Strong Eventual Consistency

9 - 09/12/2019

Let’s consider a replicated graph

State:
Nodes, Edges

Operations:

* addSubGraph
* remSubGraph

Replica 1 Replica 2

IR

Slide courtesy of Marc Shapiro.

10 - 09/12/2019

Strong Consistency

* Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

addSubGraph

remSubGraph remSubGraph

Slide courtesy of Marc Shapiro.

11 - 09/12/2019

Strong Consistency

* Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

Replica 1 Replica 2

SRRy

Slide courtesy of Marc Shapiro.

12 - 09/12/2019

Strong Consistency

* Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

Replica 1 Replica 2

D, &

\0

Slide courtesy of Marc Shapiro.

13 - 09/12/2019

Strong Consistency

* Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

Replica 1 Replica 2

.
N

0\‘

Slide courtesy of Marc Shapiro.

14 - 09/12/2019

Strong Consistency

* Mimics a centralized database behaviour by synchronizing all writes
(using a consensus protocol like Paxos).

- Slow and unavailable under network partition.

+ Easy to program - replication is almost transparent.
Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

15 - 09/12/2019

Eventual Consistency

e Update locally, propagate asynchronously.
* On conflict: consensus in the background, rollback, or arbitrate.

Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

16 - 09/12/2019

Eventual Consistency

e Update locally, propagate asynchronously.
* On conflict: consensus in the background, rollback, or arbitrate.

Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

17 - 09/12/2019

Eventual Consistency

e Update locally, propagate asynchronously.
* On conflict: consensus in the background, rollback, or arbitrate.

Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

18 - 09/12/2019

Eventual Consistency

e Update locally, propagate asynchronously.
* On conflict: consensus in the background, rollback, or arbitrate.

Replica 1 Replica 2

Slide courtesy of Marc Shapiro.

19 - 09/12/2019

Eventual Consistency

e Update locally, propagate asynchronously.
* On conflict: consensus in the background, rollback, or arbitrate.

Replica 1 Replica 2

Conflict

t@ U

Slide courtesy of Marc Shapiro.

20 - 09/12/2019

Eventual Consistency

e Update locally, propagate asynchronously.
* On conflict: consensus in the background, rollback, or arbitrate.

Replica 1 Reconcile Replica 2

5 WD

Slide courtesy of Marc Shapiro.

21 - 09/12/2019

LWW: Last Writer Wins
0 o s
- Reconci
Balance = 100 econcile

.. >

22 - 09/12/2019

Eventual Consistency

e Update locally, propagate asynchronously.
* On conflict: consensus in the background, rollback, or arbitrate.
* Conflict resolution: ad-hoc mechanisms, unclear semantics.

Replica 1 Reconcile Replica 2

5D U

Slide courtesy of Marc Shapiro.

23 - 09/12/2019

Strong Eventual Consistency

e Update locally, propagate asynchronously.
* Conflict-free objects: local deterministic conflict resolution.
* No consensus, no rollback.

Replica 1 Replica 2

RPN

Slide courtesy of Marc Shapiro.

24 - 09/12/2019

Strong Eventual Consistency

e Update locally, propagate asynchronously.
* Conflict-free objects: local deterministic conflict resolution.
* No consensus, no rollback.

Replica 1 Replica 2

Iae R

Slide courtesy of Marc Shapiro.

25 - 09/12/2019

Strong Eventual Consistency

e Update locally, propagate asynchronously.
* Conflict-free objects: local deterministic conflict resolution.
* No consensus, no rollback.

Replica 1 Replica 2

SRR

Slide courtesy of Marc Shapiro.

26 - 09/12/2019

Strong Eventual Consistency

e Update locally, propagate asynchronously.
* Conflict-free objects: local deterministic conflict resolution.
* No consensus, no rollback.

Replica 1 Replica 2

SRRV

Slide courtesy of Marc Shapiro.

27 - 09/12/2019

Strong Eventual Consistency

e Update locally, propagate asynchronously.
* Conflict-free objects: local deterministic conflict resolution.
* No consensus, no rollback.

Replica 1 CoaniCt Replica 2

5D U

Slide courtesy of Marc Shapiro.

28 - 09/12/2019

Conflict-free replicated data types

M Shapiro, N Preguica, C Baquero... - Symposium on Self ..., 2011 - Springer

... Replicating data under Eventual Consistency (EC) allows any replica to accept updates without
remote synchronisation ... refer the interested reader to a separate technical report [18] for further
detail and for a comprehensive portfolio of ... Conflict-Free Replicated Data Types 395 ...

v Y9 Cited by 538 Related articles All 33 versions

« We propose a simple, theoretically-
sound approach to eventual consistency.
Our system model, Strong Eventual
Consistency or SEC, avoids the
complexity of conflict resolution and of
roll-back. Conflict-freedom ensures
safety and liveness despite any number
of failures. »

29 - 09/12/2019

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Conflict-free Replicated Data Types

Marc Shapiro, INRIA & LiPs, Pais,France

Marek Zawirski, INRIA & UPMC, Paris, France

N° 7687 — version 2

version initiale 19 juillet 2011 — version révisée 25 aoiit 2011

Théme COM

apport
de recherche

4

AntidoteDB

Conflict-free Replicated Data Types (CRDTs)

Basic Concepts

 Read local replica

 Update local replica, transmit later

* Deterministic conflict resolution

Slide courtesy of Marc Shapiro.

31 - 09/12/2019

Query

object :
L client .\rl.q()

* Query local replica
* Clients connect to any replica

Slide courtesy of Marc Shapiro.

32 - 09/12/2019

Update and Transmit

object client @

— \r/.u()

* Update source replica
* Transmit to downstream replicas later
* Receiver applies update

Slide courtesy of Marc Shapiro.

33 - 09/12/2019

Replication Models

e State-based Replication

Source replica propagates full state
Downstream replicas merge states

Operation-based Replication

Source replica propagates functions
Downstream replicas replay received functions

Slide courtesy of Marc Shapiro.

34 - 09/12/2019

State-based Replication

* Convergence: sufficient condition
States form a monotonic semi-lattice
Merge computes Least Upper Bound

Slide courtesy of Marc Shapiro.

35 - 09/12/2019

Example: State-based Repl.

Grow-Only Counter

* Increment

= Payload: P [0, O, ..]

« value() >.P[1]

= 1increment() = P[MyRepID]++

= merge(S;,S,;) =

P = [., max(S;.P[i], S,.P[i]), ..

- 09/12/2019

Example: State-based Repl.

Grow-Only Counter

Inc() = [0, 1] Inc() = [0, 2] Merge([0,2], [1,2])=[1,2]

37 - 09/12/2019

Example: State-based Repl.

Positive-Negative Counter

* Increment / decrement

= Payload: P = [0, 0, ..],
N = 1[0, 0, ..]

» value() = 2sP[1] -)N[i]
= 1increment() = P[MyRepID]++
= decrement() = N[MyRepID]++
= merge(S;,S,;) =

P = [.., max(S,.P[i], S,.P[i]), .]
[.., max(S;.N[1], S,.N[1]),

39 - 09/12/2019

Example: State-based Repl.

Graph
State (replical): State (replica2):
* Edges={el, e2, e3, e4, e5, eb, * Edges={el,e2, e3, e4, e5, €6,
e7,e8,e9, ell } e7, e8, e9, el0 }
* Deleted={¢ , } * Deleted ={: }

Replica 1 Replica 2

el0
e’/ ell e/ ell
e9 1 e9
e2 e5
e3 . e8

vV
40 - 09/12/2019 hm_

PaPoC 2019

Static Analysis
for State-
based CRDTs

41 - 09/12/2019

Invariant Safety for Distributed Applications

Sreeja S Nair Gustavo Petri Marc Shapiro
Sorbonne Université—LIP6 & Inria, =~ ARM Research, Cambridge, UK Sorbonne Université—LIP6 & Inria,
Paris, France gustavo.petri@arm.com Paris, France

sreeja.nair@lip6.fr marc.shapiro@acm.org

ABSTRACT

We study a proof methodology for verifying the safety of
data invariants of highly-available distributed applications
that replicate state. The proof is (1) modular: one can reason
about each individual operation separately, and (2) sequen-
tial: one can reason about a distributed application as if it
were sequential. We automate the methodology and illustrate
the use of the tool with a representative example.

KEYWORDS

Replicated data, Consistency, Automatic verification, Dis-
tributed application design, Tool support

ACM Reference Format:

Sreeja S Nair, Gustavo Petri, and Marc Shapiro. 2019. Invariant
Safety for Distributed Applications. In 6th Workshop on Principles
and Practice of Consistency for Distributed Data (PaPoC °19), March
25, 2019, Dresden, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3301419.3323970

1 INTRODUCTION

A distributed application often replicates its data to several
locations, and accesses the closest available replica. Exam-
ples include social networks, multi-user games, co-operative
engineering tools, collaborative editors, source control repos-
itories, or distributed file systems. To ensure availability,
an update must not synchronise across replicas; otherwise,
when a network partition occurs, the system will block. Asyn-
chronous updates may cause replicas to diverge or to violate
the data invariants of the application.

To address the first problem, Conflict-free Replicated Data
Types (CRDTs)[13] have mathematical properties to ensure
that all replicas that have received the same set of updates
converge to the same state [13]. To ensure availability, a
CRDT replica executes both queries and updates locally and

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.

PaPoC 19, March 25, 2019, Dresden, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6276-4/19/03...$15.00
https://doi.org/10.1145/3301419.3323970

immediately, without remote synchronisation. It propagates
its updates to the other replicas asynchronously.

There are two basic approaches to update propagation: to
propagate operations, or to propagate states. In the former
approach, an update is first applied to some origin replica,
then sent as an operation to remote replicas, which in turn
apply it to update their local state. Operation-based CRDTs
require the the message delivery layer to deliver messages in
causal order, exactly once; the set of replicas must be known.

In the latter approach, an update is applied to some origin
replica. Occasionally, one replica sends its full state to some
other replica, which merges the received state into its own.
In turn, this replica will later send its own state to yet another
replica. As long as every update eventually reaches every
replica transitively, messages may be dropped, re-ordered or
duplicated, and the set of replicas may be unknown. Replicas
are guaranteed to converge if the set of states, as a result
of updates and merge, forms a monotonic semi-lattice [13].
Due to these relaxed requirements, state-based CRDTs have
better adoption [1]. They are the focus of this work.

As a running example, consider a simple auction system.
The state of an auction consists of status, a set of bids, and a
winner. This state is replicated at multiple servers; CRDTs en-
sures that all replicas eventually converge. Users at different
locations can start an auction, place bids, close the auction,
declare a winner, inspect the local replica, and observe if a
winner is declared and who it is. All replicas will eventually
agree on the same auction status, same set of bids and the
same winner.

However, the application may also require to maintain a
correctness property or invariant over the data. An invariant
is an assertion on application data that must evaluate to true
in every state of every replica. For instance, the auction’s
invariant is that: when the auction is closed, there is a winner;
there is a single winner; and the winner’s bid is the highest.

Such an invariant is easy to ensure in a sequential system,
but concurrent updates might violate it. In this case, the ap-
plication would need to synchronise some updates between
replicas, in order to maintain the invariant. For instance, in
the absence of sufficient synchronisation, a replica might
close the auction and declare a winner, while concurrently a
user at a different replica is placing a higher bid.

Operation-based Replication

* Convergence: sufficient condition

Operations must commute and be idempotent

42 - 09/12/2019

Example: Operation-based Repl.
Grow-Only Set

Sequential specification of Set:

{true} add(e) {e €5}

Commutative operations (e # f):

{true} add(e) || add(e) {e €5}
{true} add(e) || add(f) {e,f €S}

Slide courtesy of Marc Shapiro

43 - 09/12/2019

Example: Operation-based Repl.
Set

Sequential specification of Set:

{true} add(e) {e €5}

{true} rmv(e)

Slide courtesy of Marc Shapiro.

44 - 09/12/2019

Example: Operation-based Repl.

Set
{true} add(e) || rmv(e) {P?77}
add wins {e €5}
remove wins {e S}
error state {le €S}
last writer wins { add(e)<rmv(e) =e &S A

rmv(e) < add(e) = e €S}

Resort to coordination...

Slide courtesy of Marc Shapiro.

45 - 09/12/2019

POPL 2016

Static Analysis
for Operation-
based CRDTs

46 - 09/12/2019

’Cause I’m Strong Enough:

Reasoning about Consistency Choices in Distributed Systems

Alexey Gotsman
IMDEA Software Institute, Spain

Mahsa Najafzadeh

Sorbonne Universités, Inria,
UPMC Univ Paris 06, France

Abstract

Hongseok Yang
University of Oxford, UK

Carla Ferreira

NOVA LINCS, DL FCT,
Universidade NOVA de Lisboa, Portugal

Marc Shapiro

Sorbonne Universités, Inria,
UPMC Univ Paris 06, France

use. Ideally, we would like replicated databases to provide strong
'y, i.e., to behave as if a single centralised node handles

Large-scale distributed systems often rely on replicated datab
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases is far from trivial: requesting stronger
consistency in too many places may hurt performance, and request-
ing it in too few places may violate correctness. To help program-
mers in this task, we propose the first proof rule for establishing
that a particular cholce of consistency guarantees for various oper-
ations on a replicated database is enough t the preservation
of a given data integrity invariant. Our rule is modular: it allows
reasoning about the behaviour of every operation separately under
some assumption on the behaviour of other operations. This leads
to simple reasoning, which we have automated in an SMT-based
tool. We present a nontrivial proof of soundness of our rule and
illustrate its use on several examples.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; causal consistency integrity invariants

1. Introduction

To achieve availability and scalab|l|ty, many modern distributed

rely on repli b which maintain multiple
rephca.s of shared data. Clients can access the data at any of the
replicas, and these replicas communicate changes to each other
using message passing. For example, large-scale Internet services
use data replicas in geographically distinct locations, and appli-
cations for mobile devices keep replicas locally to support offline

Permission to make digital or hard copies of all or part of this work for personal or

all operations. However, achieving this ideal usually requires syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail [21124
For thls reason, modern replicated databases often eschew syn-
cc : such d are commonly dubbed
evemually consistent IE]] In these databases, a replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns to the client; the
effect of the operation is propagated to the other replicas only even-
tually. This may lead to anomalies—behaviours deviating from
strong consistency. One of them is illustrated in Figure [[(a). Here
Alice makes a post while connected to a replica r1, and Bob, also
connected to T1, sees the post and comments on it. After each of
the two op r1 sends a to the other replicas in the
system with the update performed by the user. If the messages with
the updates by Alice and Bob arrive to a replica r» out of order,
then Carol, connected to r», may end up seeing Bob’s comment,
but not Alice’s post it pertains to. The consistency model of a repli-
cated database restricts the anomalies that it exhibits. For example,
the model of causal consistency [33], which we consider in this pa-
per, disallows the anomaly in Figure [T[a), yet can be implemented
without any synchronisation. The model ensures that all replicas in
the system see causally dependent events, such as the posts by Al-
ice and Bob, in the order in which they happened. However, causal
consistency allows different replicas to see causally independent
events as occurring in different orders. This is illustrated in Fig-
ure [[(b), where Alice and Bob concurrently make posts at r, and
2. Carol, connected to r3 initially sees Alice’s post, but not Bob’s,
and Dave, connected to r4, sees Bob’s post, but not Alice’s. This
outcome cannot be obtained by executing the operations in any to-
tal order and, hence, deviates from strong consistency.
Such anomalies related to the ordering of actions are often ac-

clasmom use is granted without fee provided that copies are not made or

S' rofit or commercial advantage and that copies bear this notice and the full citation

e first page. Copyrights for nts of this work owned by than ACM

must be honored Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

POPL’ 16, January 20-22, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-3549-2/16/01...$15.00
http://dx.doi.org/10.1145/2837614.2837625

ble for appli . What is not acceptable is to violate cru-
cial well-for properties of application data, called integriry
invariants. Consistency models that do not require any synchroni-
sation are often too weak to ensure these. For example, consider a
toy banking application where the database stores the balance of a
single account that clients can make deposits to and withdrawals
from. In this case, an integrity invariant may require the account
balance to be always non-negative. Consider the database compu-

Library of CRDTs

* Register * Counter

= Last-Writer Wins = Unlimited

= Multi-Value = Non-negative
* Set * Graph

= Grow-Only = Directed
= 2P (Two Phase) = Monotonic DAG
= OR (Observed Remove) = Edit graph

* Map

* Sequence
* Tree

Slide courtesy of Marc Shapiro.

47 - 09/12/2019

CRDTs in Industry

«
ﬁ riq k 'PayPal é redis

TOMTOM> il sounDCLOUD

Not Everything is a CRDT

* Some application invariants cannot be maintained without
synchronization

= Example: bounded resources invariants

= Balance>=0
= Tickets <=1000
= Students enrolled <= 200

49 - 09/12/2019

Bank Account
Precondition Stability Analysis

e Invariant deposit withdraw
ol deposit \/ \/
[] >=
alance >=0 withdraw \/ X

Deposit (amt)

Precondition: TRUE
Effect: balance = balance + amt

Sync-free

Withdraw (amt)

Precondition: amt <= balance Sync with other withdrawals

Effect: balance = balance - amt

50 - 09/12/2019

CAP Theorem

A service can either guarantee Consistency or
Availability under network Partition

CAP

Strong Consistency Eventual Consistency

N\

Strong Eventual Consistency
A sweet spot for applications that can
be expressed using CRDTs

51 - 09/12/2019

4

AntidoteDB

Transactional Causal Consistency

52 - 09/12/2019

Transactional Causal Consistency

53 - 09/12/2019

Support for atomicity

Highly-available
No aborts

Strongest possible consistency whi
maintaining availability
Interactive read-write

transactions

TCC in AntidoteDB

Supports replication and

sharding

Cure: Strong semantics meets

high availability and low latency

Deepthi Devaki Akkoorath*, Alejandro Z. Tomsict, Manuel Bravo?, Zhongmiao Lif,
Tyler Crainf, Annette Bieniusa®, Nuno Preguica®, Marc Shapirof

*University of Kaiserslautern, tInria & LIP6-UPMC-Sorbonne Universités

YUniversité Catholique

Abstract—Developers of cloud-scale applications face a dif-
ficult decision of which kind of storage to use, summarised by
the CAP theorem. Currently the choice is between classical
CP databases, which provide strong guarantees but are slow,
expensive, and unavailable under partition; and NoSQL-style
AP databases, which are fast and available, but too hard to
program against. We present an alternative: Cure provides
the highest level of guarantees that remains compatible with
availability. These guarantees include: causal consistency (no

de Louvain, SNOVA LINCS

and sequences, with intuitive semantics and guaranteed
convergence even in the presence of concurrent conflicting
updates and partial failures, and (iii) transactions, ensuring
that multiple keys (objects) are both read and written con-
sistently, in an interactive manner.

Causal+ consistency (CC+) [6, 23] represents a sweet spot
in the availability-consistency tradeoff. It is the strongest
model compatible with availability [8] for individual opera-
tions. Since it ensures that the causal ordering of operations

is it is easier to reason about for programmers

ordering Y Iti-key updates),
and support for high-level data types (developer friendly API)
with safe resolution of concurrent updates con-

These inimise the lies caused by

parallelism and distribution, thus facilitating the development
of applications. This paper presents the protocols for highly
available transactions, and an experimental evaluation showing
that Cure is able to achieve scalability similar to eventually-
consistent NoSQL databases, while providing stronger guaran-
tees.

I. INTRODUCTION

Internet-scale applications are typically layered above a
high-performance distributed database engine running in a
data centre (DC). A recent trend is to use geo-replication
across several DCs to avoid wide-area network latency and
to tolerate downtime. This scenario poses big challenges
to the distributed database. Since network failures (called
partitions) are unavoidable, according to the CAP theorem
[20] the database design must sacrifice either strong consis-
tency or availability. Traditional databases are “CP”; they
provide consistency and a high-level SQL interface, but
lose availability. NoSQL-style databases are “AP”, highly
available, which brings significant performance benefits.

and users. Consider, for instance, a user who posts a new
photo to her social network profile, then comments on the
photo on her wall. Without causal consistency, a user might
observe the comment but not be able to see the photo, which
requires extra programming effort to avoid the anomaly at
the application level.

CC+ requires that replicas converge to the same state
under icting updates. For g ing con-
vergence, many existing causal+ consistent systems adopt
the last-writer-wins rule [7, 17, 19, 23, 24], where the
update that occurs “last” overwrites the previous ones. We
rely on CRDTSs, developer-friendly high-level data types
that guarantee convergence and have rich semantics [27].
Operations on CRDTs are not only register-like assignments,
but methods corresponding to a CRDT object’s type. For
example, a set supports add(item) and remove(item) opera-
tions. The implementation of a CRDT set guarantees that no
matter the order in which a replica receives two conflicting
add and remove operations, the state of the set will converge
at different replicas without the need for synchronization
or application conflict handling. For instance, the Bet365

However, AP-d expose applicati P
inconsistency anomalies, and most provide only low-level
key-value interface.

To alleviate this problem, recent work has focused on
enhancing AP designs with stronger semantics [23, 24, 28].
This paper presents Cure, our contribution in this direction.
While providing availability and performance, Cure sup-
ports: (i) causal+ consistency, ensuring that if one update
happens before another, they will be observed in the same
order, and that replicas converge to the same state under
concurrent conflicting updates, (i) support for high-level
replicated data types (CRDTSs) such as counters, sets, tables

1063-6927/16 $31.00 © 2016 IEEE
DOI 10.1109/ICDCS .2016.98

report that using Set CRDTs changed their life,
freeing them from low-level detail and from having to
p for ies [25].

Performing multiple operations in a transaction enables
the application to maintain relations between multiple ob-
jects or keys. Highly Available Transactions (HATs) eschew
traditional strong isolation properties, which require syn-
chronisation, in favour of availability and low latency [9, 14].
Existing CC+ HAT implementations provide either reading
from a snapshot [7, 17, 19, 23, 24] or atomicity of updates
[11, 24]; we il d Tr: i Causal C
(TCC), where all transactions provide both.

IEEE
405 @ computer
society

4

AntidoteDB

What | try to do ...

Towards Shard Replication in AntidoteDB

55 - 09/12/2019

Just-Right Consistency

Centralized

Program
y

Concurrent
Program

Add convergence
mechanisms

Add detection of
incorrect states
Remedy of incorrect
states

Add synchronization

async _ —
-

— _async

_—
[J—

56 - 09/12/2019

Just-Right Consistency

« Given a correct centralized database program, can we synthesis a
correct and performant program for an AP database?

o
@

Centralized Concurrent
Program Program
y

57 - 09/12/2019

Just-Right Consistency

« Static analysis tools for state-based and operation-based CRDTs

Just-Right Consistency

» | am looking at a transaction chopping criteria for TCC.

transferl(accl, acc2, amt) transfer2(accl, acc2, amt) {
{ chain {
txn { txn {
accl.balance -= amt; N } accl.balance -= amt;
. += . .
} acc2.balance amt; l txn {
} acc2.balance += amt;

}

59 - 09/12/2019

Summary

e Strong Eventual Consistency

= High availability
= Strong convergence guarantees

* CRDTs

= Sequential-like data structures with local deterministic conflict
resolution

* Transactional Causal Consistency
= Highly-available transactions with no aborts

60 - 09/12/2019

Acknowledgements

 The work presented is the result of the work of a very large
number of persons, mostly in the context of SyncFree (2013-2016)
and LightKone (2016-2019) projects.

* Most of the slides are from presentations prepared by Marc
Shapiro (of Sorbonne-Université-LIP6 & INRIA) and Annette
Bieniusa (Technical University of Kaiserlautern).

* | thank them for authorizing my use of their slides.

61 - 09/12/2019

https://www.antidotedb.eu/
https://github.com/AntidoteDB

AntidoteDB

([] ® () AntidoteDB X +

& C' @ github.com/AntidoteDB * O @ O e :

Pull requests Issues Marketplace Explore

AntidoteDB

ElRepositories 27 Packages People 18 Teams 1 Projects 6

Pinned repositories

antidote

A planet scale, highly available, transactional
database built on CRDT technology

antidote_crdt
Forked from deepthidevaki/antidote_crdt

crdt-visualizer

Visualized CRDT executions in a web page to

. . . . lain thei ti
CRDT implementations to use with Antidote explain their semantics

¥ 16

¥ 59

*17

@crlang % 466 @ Erlang @ Typescript k9 ¥1

E] antidote-jupyter-notebook antidote-erlang-client E] antidote-java-client

A Jupyter notebook for learning about Antidote.

¥2

Erlang client for Antidote A java client for antidote db.

@ Jupyter Notebook W 6 @cErlang %8 ¥6 Q@Java K1 ¥3

Type: All Language: All ~

62 - 09/12/2019

https://www.antidotedb.eu/
https://github.com/AntidoteDB

Thank you!

63 - 09/12/2019

