
Resilient Optimistic
Termination Detection

for the Async-Finish Model
Sara S. Hamouda1,2 and Josh Milthorpe1

1Australian National University, Australia
2Inria, France

ISC-HPC 2019

Research Aim

Simple Models for Resilience Programming

1/32

Asynchronous Partitioned Global Address Space Model

w
ai

t

w
ai

t
w

ai
t

Global reference Local referenceGlobal
Address

Space

Task
Parallelism

Locality
Control

Examples: X10 (from IBM) and Chapel (from Cray)

2/32

Asynchronous Partitioned Global Address Space Model

w
ai

t

w
ai

t
w

ai
t

Global reference Local referenceGlobal
Address

Space

Task
Parallelism

Locality
Control

Examples: X10 (from IBM) and Chapel (from Cray)

2/32

Asynchronous Partitioned Global Address Space Model

w
ai

t

w
ai

t
w

ai
t

Global reference Local referenceGlobal
Address

Space

Task
Parallelism

Locality
Control

Examples: X10 (from IBM) and Chapel (from Cray)

Lost
Data

2/32

Asynchronous Partitioned Global Address Space Model

w
ai

t

w
ai

t
w

ai
t

Global reference Local referenceGlobal
Address

Space

Task
Parallelism

Locality
Control

Examples: X10 (from IBM) and Chapel (from Cray)

Lost
Data

Br
ok

en

Co
nt

ro
l F

lo
w

2/32

Resilient X10

PPoPP’14

Data RecoveryControl Flow Repair

Resilient
Termination
Detection
Protocol

3/32

Resilient X10

PPoPP’14

Data RecoveryControl Flow Repair

Resilient
Termination
Detection
Protocol

Protocol inefficiencies
• Pessimistic protocol

It favours the simplicity of failure recovery over failure-free performance.
• Not message-optimal

It uses more task tracking messages than strictly required.

3/32

Agenda

• Background
§ The Async-Finish Task Model

• Async-Finish Termination Detection
§ The non-resilient protocol
§ The pessimistic protocol
§ The optimistic protocol

• Performance Evaluation
§ Microbenchmarks
§ LULESH application

4/32

The Async-Finish Task Model
async finish at

Task Creation Synchronization Locality

5/32

The Async-Finish Task Model

finish {

at (p0) async { /*a*/ }

at (p1) async { /*b*/ }

at (p2) async { /*c*/ }

}
Z;

5/32

a

b c

The Async-Finish Task Model

finish {

at (p0) async { /*a*/ }

at (p1) async { /*b*/ }

at (p2) async { /*c*/ }

}
Z;

5/32

a

p0

b

p1

c

p2

The Async-Finish Task Model

finish {

at (p0) async { /*a*/ }

at (p1) async { /*b*/ }

at (p2) async { /*c*/ }

}
Z;

finish

a

p0

5/32

b

p1

c

p2

Async-Finish (Terminally-Strict) Spawn-Sync (Fully-Strict)

Async-Finish versus Spawn-Sync

§ A task can wait for other tasks it
directly or transitively spawned.

§ A task can wait for other tasks it
directly spawned.

a

sync

sync

f g h i

b c d e

a

finish

b c d

finish

g h

e f

i j

6/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish

a

1

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish

a

2

b

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish

a

3

b

c

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish

a

4

b

c d

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish

a

4

b

c d

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish

a

3

c d

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish

a

2

d

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish 1

d

7/32

• Finish tracks the number of active tasks within its scope.

Finish Termination Detection

finish 0

7/32

• Finish tracks the number of active tasks within its scope.
• Finish terminates when the number of active tasks reaches zero.

Finish Termination Detection

7/32

• Finish tracks the number of active tasks within its scope.
• Finish terminates when the number of active tasks reaches zero.
• Failures complicate the counting process.

Finish Termination Detection

finish

a b

?

c d

e

7/32

Agenda

• Background
§ The Async-Finish Task Model

• Async-Finish Termination Detection
§ The non-resilient protocol
§ The pessimistic protocol
§ The optimistic protocol

• Performance Evaluation
§ Microbenchmarks
§ LULESH application

8/32

Non-Resilient Finish

• Uses two TD signals per task
§ FORK
§ JOIN

Non-
existent Active Terminated

FORK JOIN
Task States

9/32

Non-Resilient Finish

• Uses two TD signals per task
§ FORK
§ JOIN

Non-
existent Active Terminated

FORK JOIN

finish

Task States

Active _ _Active++

9/32

Non-Resilient Finish

Place (s) Place (d)

1. Finish.fork (s, d)
2. Send (T)

3. Recv (T)
4. Exec (T)
5. Finish.join (s, d)

Finish
Active = 6

finish

Place (f)

at (d) async T;

T

10/32

Non-Resilient Finish

• Uses two TD signals per task
§ FORK
§ JOIN

• Message-Optimal TD:
§ A correct non-resilient finish requires one TD message per task (see proof in

Section 4).

11/32

Resilient Finish

Loss of Finish Loss of Tasks

12/32

Loss of Finish

• Two problems arise:
1. Loss of TD metadata.
2. Emergence of orphan tasks.

finish

B C

A

finish

p

q

r

13/32

Loss of Finish

• Solutions:
1. Store the finish objects in a resilient store. finish

B C

A

finish

p

q

r

Finish Resilient Store

finish
finish

14/32

Loss of Finish

• Solutions:
1. Store the finish objects in a resilient store.
2. Adoption of orphan tasks.

finish

B C

A

finish

p

q

r

Adopt

Finish Resilient Store

finish
finish

14/32

Loss of Tasks

• Finish must exclude the lost tasks from its count.

Place (s) Place (d)

Finish
Active[s] = 3
Active[d] = 2 0

finish

Place (f)

15/32

Loss of Tasks

• In-transit and live tasks have different conditions under failure.

16/32

Loss of Tasks

• In-transit and live tasks have different conditions under failure.
• Failure of the source:

Place (s) Place(d)

Place (s) Place(d)

In-Transit Task

Live Task

?

16/32

Task Active

Loss of Tasks

• In-transit and live tasks have different conditions under failure.
• Failure of the source:

Place (s) Place(d)

Place (s) Place(d)

In-Transit Task

Live Task

Task Lost

To avoid indefinite waiting
• Consider in-transit tasks from a dead source lost
• A destination must not execute a task whose source is dead

16/32

Task Active

Loss of Tasks

• In-transit and live tasks have different conditions under failure.
• Failure of the destination:

Place (s) Place(d)

Place (s) Place(d)

In-Transit Task

Live Task

Task Lost

Task Lost

17/32

Loss of Tasks

• For recovery, it is important to differentiate between in-transit tasks
and live tasks.
§ Finish excludes all tasks (in-transit or live) targeted to a dead place.
§ Finish excludes only in-transit tasks originated from a dead place.

• Message-Optimal TD:
§ A correct resilient finish requires two TD messages per task (see proof in

Section 4).
o Message for the FORK signal
o Message for the JOIN signal

18/32

Pessimistic Finish

• Uses three TD messages per task (not message-optimal)
§ FORK
§ VALIDATE
§ JOIN

Non-
existent In-Transit Live Terminated

Lost

FORK JOINVALIDATE

19/32

Pessimistic Finish

Place (s) Place (d)

1. Finish.fork (s, d)
2. Send (T)

3. Recv (T)
4. Finish.validate (s, d)
5. Exec (T)
6. Finish.join (s, d)

Pessimistic Finish
Live[s] = 3
Live[d] = 2finish

Place (f)

20/32

Pessimistic Finish

Place (s) Place (d)

1. Finish.fork (s, d)
2. Send (T)

3. Recv (T)
4. Finish.validate (s, d)
5. Exec (T)
6. Finish.join (s, d)

Pessimistic Finish
Live[s] = 3
Live[d] = 2
Trans[s][d] = 1

finish

Place (f)

at (d) async T;

T

20/32

Pessimistic Finish

Place (s) Place (d)

Pessimistic Finish
Live[s] = 3
Live[d] = 2 3
Trans[s][d] = 1 0

Place (f)

T

finish

1. Finish.fork (s, d)
2. Send (T)

3. Recv (T)
4. Finish.validate (s, d)
5. Exec (T)
6. Finish.join (s, d) 20/32

Pessimistic Finish

Place (s) Place (d)

Pessimistic Finish
Live[s] = 3
Live[d] = 3 2
Trans[s][d] = 0

Place (f)

finish

1. Finish.fork (s, d)
2. Send (T)

3. Recv (T)
4. Finish.validate (s, d)
5. Exec (T)
6. Finish.join (s, d) 20/32

Pessimistic Finish

Place (s) Place (d)

Pessimistic Finish
Live[s] = 3
Live[d] = 2 0
Trans[s][d] = 1 0

finish

Place (f)

at (d) async T;

T

20/32

Lost

Pessimistic Finish

Place (s) Place (d)

Pessimistic Finish
Live[s] = 3 0
Live[d] = 2
Trans[s][d] = 1 0

finish

Place (f)

at (d) async T;

T

20/32

Lost Active

Optimistic Finish

• Uses two TD messages per task (message-optimal)
§ FORK
§ JOIN

Non-
existent Active Terminated

FORK JOIN

Lost

21/32

Optimistic Finish

Place (s) Place (d)

1. Finish.fork (s, d)
2. Send (T)

3. Recv (T)
4. Finish.validate (s, d)
5. Exec (T)
6. Finish.join (s, d)

Optimistic Finish
transOrLive[s][d] = 3
transOrLive[d][s] = 3finish

Place (f)

at (d) async T;

T

22/32

Optimistic Finish

Place (s) Place (d)

Optimistic Finish
transOrLive[s][d] = 3 0
transOrLive[d][s] = 3finish

Place (f)

at (d) async T;

T

23/32

Lost

Optimistic Finish

Place (s) Place (d)

Optimistic Finish
transOrLive[s][d] = 3
transOrLive[d][s] = 3 0finish

Place (f)

at (d) async T;

T

How many of the 3
are in-transit?

23/32

Lost Active

Optimistic Finish

Place (s) Place (d)

Optimistic Finish
transOrLive[s][d] = 3
transOrLive[d][s] = 3 0
sent[s][d] = 10

finish

Place (f)

at (d) async T;

T

How many of the 3
are in-transit?

recv[s] = 9

23/32

Lost Active

Optimistic Finish

Place (s) Place (d)

finish

Place (f)

at (d) async T;

T recv[s] = 9

COUNT_TRANSIT (s, 10)

Optimistic Finish
transOrLive[s][d] = 3
transOrLive[d][s] = 3 0
sent[s][d] = 10

23/32

Lost Active

Optimistic Finish

Place (s) Place (d)

Optimistic Finish
transOrLive[s][d] = 3 2
transOrLive[d][s] = 3 0
sent[s][d] = 10

finish

Place (f)

at (d) async T;

T
recv[s] = 9
dead = {s}

In-transit = 1

23/32

Lost Active

Pessimistic Finish Optimistic Finish
§ Task signals

o FORK
o VALIDATE
o JOIN

§ Finish signals:
o PUBLISH
o ADD_CHILD
o RELEASE

§ Recovery signals:
o None

§ Task signals:
o FORK
o JOIN

§ Finish signals:
o PUBLISH
o RELEASE

§ Recovery signals:
o COUNT_TRANSIT
o FIND_CHILDREN

Resilient Termination Detection Signals

24/32

Optimistic Finish Correctness

• We verified the correctness of our protocol using TLA+ Model
Checker.
• Specification:

§ https://github.com/shamouda/x10-formal-spec

• See section 8.3 for the details.

25/32

https://github.com/shamouda/x10-formal-spec

Performance Evaluation

Finish Implementations

Finish Implementation

Optimistic (O) Pessimistic (P)

Centralized (p0) Distributed (dist) Centralized (p0) Distributed (dist)

O-p0 O-dist P-p0 P-dist

26/32

Microbenchmarks

• Fan-Out Fan-Out (All-to-all)
§ At 1024 places:

o Tasks/Finish: 10242

o Improvement centralized: 53%
o Improvement distributed: 59%

27/32

Microbenchmarks

• Synchronous Ring
§ At 1024 places:

o Tasks/Finish: 1
o Improvement Centralized: 1%
o Improvement Distributed: 0%

28/32

Microbenchmarks

• Binary Tree Fan-Out
§ At 1024 places:

o Tasks/Finish: 2
o Improvement centralized: 2%
o Improvement distributed: 27%

29/32

LULESH

• A shock hydrodynamics proxy application.
§ Iterative
§ Stencil-based

• X10’s implementation:
§ In-memory checkpointing
§ Communication intensive initialization module

o Called at the beginning of execution.
o Called at failure recovery time.

• Failure simulation:
§ Execute 60 iterations
§ Checkpoint every 10 iteration
§ Kill 3 places at iterations: 15, 35, 55

30/32

LULESH

31/32

Summary

• We presented ‘Optimistic Finish’ -- a message-optimal resilient
termination detection protocol for the async-finish model.
§ The effect of the optimistic protocol is more evident as the number of remote

tasks increases.

• Takeaway message: Simple reductions in runtime tracking messages
can result in significant performance improvements.

• It is open-source:
§ Source code: https://github.com/shamouda/x10/tree/optimistic
§ TLA+ Specification: https://github.com/shamouda/x10-formal-spec

32/32

https://github.com/shamouda/x10/tree/optimistic
https://github.com/shamouda/x10-formal-spec

Thank you!

